Contents

Annotation ... 3
NOTICE OF LIABILITY ... 4
1. Installing DrufelCNC ... 5
2. Run the program .. 12
3. Customization ... 13
3.1. Common .. 13
3.2. Controller Configuration ... 14
3.3. Axis Setup .. 15
3.3.1. Calibrate axis .. 16
3.4. Configure Input Ports .. 18
3.4.1. Input port diagnostics ... 19
3.4.2. Hot keys ... 20
3.5. Configuring output ports ... 22
3.6. Spindle adjustment ... 23
3.7. Machine size .. 25
3.7.1. Size axis .. 26
3.7.2. Soft limit ... 27
3.7.3. Home function .. 28
4. Run the control program (G-code) .. 29
5. Search tool zero .. 30
6. Manual control ... 31
7. Spindle control and cooling ... 32
8. Assignment of coordinates ... 33
8.1. Measurement system ... 34
8.2. Machine coordinates ... 35
8.3. Work coordinates .. 35
9. Display 3D model .. 36
10. Opening HPGL files .. 37
10.1 Basic parameters of the HPGL file converter ... 38
10.2 Spindle settings of HPGL file converter ... 39
10.3 Use step by step .. 40
11. Generating a G-code from an image .. 41
Annotation

This document is the user guide for the DrufelCNC software. The information contained in this document may be modified by employees of the company with the subsequent notification. Your changes are reflected in the document version. The company does not guarantee the absence of errors or typographical errors in this document, but will work to eliminate them, and will also be grateful to everyone who finds them and points to them.

Comments and suggestions to this document are accepted by email: social@drufelcnc.com. Document version - V.1.17.
NOTICE OF LIABILITY

Using any CNC machine is a dangerous operation. All precautions must be taken, as the machines may turn on at any time, the software MAY malfunction at any time, any user of the Software must understand and take this into account, and must immediately uninstall the Software and not proceed with the installation if they are not fully understand all the consequences of the use, as well as the fact that in case of misuse, the wrong code, unexpected movement or any damage caused by the aforementioned consequences mi, there is no legal protection.
1. Installing DrufelCNC

To install the program you need to download the installation files on the official website www.drufelcnc.com. You can use one of the following files:

- DrufelCNC_installer_x64.exe, DrufelCNC_installer_x32.exe - this installation file will automatically install DrufelCNC on your computer documentation and examples of g-codes;

- DrufelCNC.zip - archive with DrufelCNC x32 and x64 with examples and documentation.

Run the desired file and follow the installation instructions.

Description of the installation process

1. *Start the installation process*. In this installation window you need to select the program installation mode.

![Select Setup Install Mode](image-url)
2. **License Agreement.** The License Agreement installation window contains the text of the license agreement for the use of the DrufelCNC software product. Please read the agreement and select “I accept the terms of the license agreement”. To continue the installation, click "Next." During the entire installation process, to return to the previous installation step, click the Back button. To exit the installer, click Cancel.

![License Agreement Dialog Box]

3. **Select the directory in which the installation will be made.** At this stage of the installation, you must specify the directory in which DrufelCNC will be installed. The default installation directory is “C:\Program Files\DrufelCNC”.

If you wish, you can specify any other path. Depending on the version of Windows, the default path may be different. To continue the installation, click "Next."
4. **Selection of additional installation parameters.** At this stage of installation, it is necessary to determine the need to create program shortcuts on the desktop. By default, a program shortcut will be created. To continue the installation, click "Next."
5. **Preparing for installation.** A window with information about the selected installation type, selected components and installation directory will be displayed. Check the information and click "Install."
6. **The final stage of installation.** At the last stage, the installation program will report the result and will offer to start the programs depending on the type of installation selected earlier. By default, you can run the program. To complete the installation, click Finish.
Completing the DrufelCNC Setup Wizard

Setup has finished installing DrufelCNC on your computer. The application may be launched by selecting the installed shortcuts.

Click Finish to exit Setup.

☑️ Launch DrufelCNC

Finish
2. Run the program

To run the program, use the version depending on the bitness of your operating system:

- DrufelCNCx32.exe - version for 32-bit operating systems
- DrufelCNCx64.exe - version for 64-bit operating systems

The main window of the program.

In the lower left corner displays the status of the connection to the USB controller, and other informational messages.
3. Customization

To configure DrufelCNC you must click on the button with the image of the key. Next, go to the section of settings that interests you.

3.1. Common

In the common tab, you can set values for accelerated tooth movement (idle movement, G00), working feed (G01, G02, G03) and use anti-aliasing.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated tool movement (idle movement, G00)</td>
<td>Default speed for G00 commands. If no speed for G00 is specified in the G code file, then G00 commands will use that speed.</td>
</tr>
<tr>
<td>Working feed (G01, G02, G03)</td>
<td>Default speed for G01, G02, G03 commands.</td>
</tr>
</tbody>
</table>
When moving along curved vectors, the speed of movement will decrease.

3.2. Controller Configuration

In the window that opens, go to the «Device Controller» tab.

In the hardware section, you must select a controller by setting a point in the radio button block opposite the USB controller. Save the settings.
3.3. Axis Setup

To configure a stepper motor or servo drive, go to the Axis Settings tab.

![Axis Settings](image)

Set the required number of pulses for each axis. Save the settings. If necessary, specify the submission of the axes. Use the inversion setting to change the direction of rotation of the motor.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Enables the axis to be displayed in the coordinate list.</td>
</tr>
<tr>
<td>Pulses at 1 mm</td>
<td>The number of pulses per millimeter. You can use the calibration function to calculate.</td>
</tr>
<tr>
<td>Speed mm/min</td>
<td>Maximum speed of the axis movement.</td>
</tr>
<tr>
<td>Acceleration mm/min</td>
<td>Smooth acceleration of the axis movement.</td>
</tr>
<tr>
<td>Invert direction</td>
<td>Invert the direction of movement of the axis.</td>
</tr>
<tr>
<td>Invert step</td>
<td>Invert the step signal when transmitting the axis movement commands.</td>
</tr>
</tbody>
</table>
3.3.1. Calibrate axis

By clicking on the calibration button for a specific axis, the axis calibration window will open. This window is for calculating the number of pulses per mm.

In the "Move to" field, enter a value for the distance by which you want to move the tool. In the "Move speed" field, set the speed of movement.

Attention! This speed must be slow! This is necessary so that you can quickly respond to an emergency and not damage the machine.

After that click on the «Start move» button. After pressing the button, movement will begin for the specified segment.
After the tool has finished moving, use the ruler to measure the actual distance the tool moved.

Enter this value in the «The tool has moved» to field.

Click the «Calculate» button. After pressing, the number of pulses per 1 mm will be calculated that you need to set for the axis to be calibrated.
Click the «Apply» button to apply the calculation results.

3.4. Configure Input Ports

To configure input ports, go to the Input Ports tab.

Set the input port numbers according to the configuration of the machine and the CNC controller. Save the settings.
3.4.1. **Input port diagnostics**

This panel displays the current state of the controller input ports.

A red LED indicates there is no signal on the input port. A green LED indicates signal is present on the input port.
3.4.2. Hot keys

In order to set your hot keys, you need to click on the Hot Key column of a specific input port.

Next in this field you must specify your keyboard shortcut that you want to use.

«Use global hotkeys» - this function in which if the DrufelCNC window is not active, then hotkeys will still go to DrufelCNC.

«Use default hotkeys» - this function for hotkeys will work according to the following list:
Attention! Custom shortcuts take precedence over the default keys.
3.5. Configuring output ports

To configure output ports, click the Output Ports tab.

Set the output port numbers according to the configuration of the machine and the CNC controller. Save the settings.
3.6. Spindle adjustment

To configure the spindle parameters, you need to go to the "Spindle" tab.

Set the speed and acceleration parameters according to the spindle specification. Set the default spindle rotation direction.

Set the spindle coefficient. Save the settings.

Spindle speed - the nominal number of revolutions per minute for your spindle.

Acceleration – when the spindle is turned on, the spindle rotation speed will be smoothly set in accordance with the specified acceleration.

Spindle coefficient - if you need to calibrate the output value of the port 0-10V then change this multiplication factor.

With this **Counterclockwise/Clockwise** setting,
you can set the direction of rotation of the spindle when you press the «Turn the spindle» button in the main window.
3.7. Machine size

With these settings you can customize the machine dimensions, soft limits, home function.
3.7.1. **Size axis**

Set the min / max limits for your machine.

Attention! The limits are specified in machine coordinates. The difference between the min and max should be the actual axis length of your machine.

According to these settings in the 3D model window, the dimensions of the axis will be displayed as a quadrilateral in each plane.
3.7.2. **Soft limit**

If you want the tool to stop when it reaches the minimum and maximum of your axis, use the appropriate constraints. These settings are designed to not damage your machine.

- when the minimum limit of your axis is reached, the tool movement will stop and prevent it from moving towards the minimum.

- when the maximum limit of your axis is reached, the tool will stop moving and prevent it from moving towards the maximum.

- if the specified value remains before reaching the minimum or maximum, the tool speed is reduced to the minimum.
3.7.3. Home function

With these settings you can set the driving direction, priority and speed.

These settings are for buttons on the main window.

- when searching for the home position, the instrument will move to the minimum.
- when searching for the home position, the instrument will move to the maximum.

Attention! If you have turned on both the “To min” and “To max” settings, then when searching for the home position, the instrument will first move to the minimum and then to the maximum.

- allows you to specify the order in which the search for the home position is performed for each axis.
home order = 1 will be executed very first.
home order = 6 will be executed most recently.

is the speed of the tool when searching for the home position.
4. Run the control program (G-code)

To run the control program in the language of G-code, you must click on the button with the image of the folder, then select the file. If the file is recognized successfully, the three-dimensional model of the file will be displayed in the right part of the main window.

To start processing, click "Start".
5. Search tool zero

To begin searching for a tool zero, set the height of the probe used. Next, click . Wait until the end of the process. First you need to configure the input port number for the probe. The Z axis is assigned according to the value found and the height of the probe. After completing the tool zero search, the tool will return to its original position. To cancel the tool zero search, click .

For the tool zero search to work correctly, you must set the input port number in accordance with the port number on the controller where your probe is connected. Set "Invert" so that the "Value now" in the normal state of the Probe is "Low".
6. Manual control

This field sets the speed of movement of the instrument during manual operation.

- Speed reduction button.
- Speed increase button.
- 1% of the set speed or minimum speed.
- 10% of the set speed.
- 100% of the set speed.

The current speed is highlighted in green (X100).

For manual control, press the corresponding joystick button.
7. Spindle control and cooling

- Spindle power button.
- Spindle off button.

To set the spindle speed, click on the progress bar area.

- Button to increase the rotation of the spindle.
- Button to reduce the rotation of the spindle.
8. Assignment of coordinates

To reset the x-axis, click the button \(X \). To reset the remaining coordinates, click on similar buttons.

To set your own X coordinate axis, click the digital value of the X coordinate axis. \(X \times 1.246875 \). In the field that appears, enter the desired value and click on the button \(\checkmark \). To cancel the entry, click \(\times \).

Use the buttons to set more accurate coordinates \(\downarrow \). To set the values of the remaining coordinates, use the same action algorithm.

To reset all coordinates, click on the button \(\text{ALL ZERO} \).

To move the tool to zero coordinates, click \(\text{GOTO ZERO} \). To go to the coordinates X0 and Y0, click on the button \(\text{GOTO X0Y0} \).
8.1. Measurement system

The default system of units is millimeters. To set the units in inches, click **INCH MM**. To set the system of units in millimeters, click **INCH MM**. The current coordinate system is highlighted in green.
8.2. Machine coordinates

The machine coordinates are the actual coordinates of your axes. These coordinates are used to define the limits and dimensions of the machine. If machine coordinates are activated for display, they are highlighted in green.

8.3. Work coordinates

Work coordinates are relative to machine coordinates. These are the coordinates at which the g-code is executed by default. If work coordinates are activated for display, they are highlighted in green.
9. Display 3D model

The code you downloaded is displayed as a 3D model on the right side of the application window.

To rotate the 3D model, move the mouse pointer to the display area of the 3D model. Right-click and hold to move the mouse pointer. You can also use additional buttons. To zoom the 3D model, use the mouse wheel or. To move the model in the plane, use the left mouse button.

To turn on the grid, click on the button. In order to turn off the grid, click on the button. Grid enabled by default.
10. Opening HPGL files

To open files in HPGL format, you must click on the button with the image of the folder, then select the file. In the window that opens, you must select the parameters for converting HPGL to G-code.

After successful conversion, you will see a three-dimensional model of the file.
10.1 Basic parameters of the HPGL file converter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machining plane</td>
<td>The plane in which the HPGL file will be executed.</td>
</tr>
<tr>
<td>Scaling</td>
<td>The scale corresponds to one HPGL unit per millimeter.</td>
</tr>
<tr>
<td>Moving speed, mm/min; Tool lifting, mm;</td>
<td>Tool travel speed without milling. Moving between milling areas.</td>
</tr>
<tr>
<td>Milling speed, mm/min; Lower tool, mm;</td>
<td>The speed at which the tool moves when milling. Model milling speed.</td>
</tr>
<tr>
<td>Tool position when moving to the milling area.</td>
<td>Tool position when milling the model.</td>
</tr>
</tbody>
</table>
10.2 Spindle settings of HPGL file converter

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn on and off the spindle</td>
<td>The spindle will turn on when the HPGL file starts executing, the spindle turns off when the HPGL file finishes executing.</td>
</tr>
<tr>
<td>Turn off idle (laser mode)</td>
<td>The spindle will only work when milling. This setting is suitable for laser or plasma operation.</td>
</tr>
<tr>
<td>Spindle speed</td>
<td>The spindle speed while executing the HPGL file. When using a laser, sets the laser power.</td>
</tr>
<tr>
<td>Direction of rotation:</td>
<td>The direction of rotation of the spindle is counterclockwise when executing the HPGL file. Corresponds to command M04.</td>
</tr>
<tr>
<td></td>
<td>The direction of rotation of the spindle is clockwise when executing the HPGL file. Corresponds to command M03.</td>
</tr>
<tr>
<td>Cooling</td>
<td>Cooling will be turned on before executing the HPGL file. Corresponds to commands M08 and M07.</td>
</tr>
</tbody>
</table>
10.3 Use step by step

With the help of "Use step by step" you can set up step-by-step milling (cutting) of models. This will reduce the negative impact on the cutter.

After this axis position, the step milling algorithm will start. For example after $Z = 0.5$ mm.

The cutter will move this distance after each cycle through the entire HPGL file. For example, 0.5 mm.

If necessary, you can set a fixed distance for the last step.
11. **Generating a G-code from an image**

To open a file in the format (png, jpeg, gif, bmp), you must click on the button with the image of the folder or select the necessary file and transfer it to the G-code field.

In the window that opens, you must select the options for converting the image into a G-code.

In the engraving color interval block, you can adjust the color interval.
In the Image Sizes block, you can adjust the image size.

- proportional image resizing.
- not proportional image resizing.

In the Laser Settings block, you can configure the laser settings.

- laser power setting
- laser beam diameter adjustment (mm)
- accelerated motion setting (G00)
- accelerated position adjustment (mm)
- engraving speed setting
- laser focus adjustment